Identification of Hot Spots in Protein Structures Using Gaussian Network Model and Gaussian Naive Bayes
نویسندگان
چکیده
منابع مشابه
Identification of Hot Spots in Protein Structures Using Gaussian Network Model and Gaussian Naive Bayes
Residue fluctuations in protein structures have been shown to be highly associated with various protein functions. Gaussian network model (GNM), a simple representative coarse-grained model, was widely adopted to reveal function-related protein dynamics. We directly utilized the high frequency modes generated by GNM and further performed Gaussian Naive Bayes (GNB) to identify hot spot residues....
متن کاملGaussian Naive Bayes with Smooth Basis Functions
We examine advantages of using smooth basis functions in classifying fMRI (functional MR Imaging) data. fMRI data is a measurement of neural activity in the brain. It allows us to see how each part of the brain responses to stimuli. The task in which we are interested is to identify mental states from some given fMRI data. Specifically, we want to classify between two different states using lab...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملLimiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model
The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BioMed Research International
سال: 2016
ISSN: 2314-6133,2314-6141
DOI: 10.1155/2016/4354901